Fe-Pr-Pt (Iron-Praseodymium-Platinum)

V. Raghavan

Recently, [2005Ren] determined an isothermal section for this system at 900 °C. No ternary compounds were found. The solubility of Pr in Fe-Pt phases was found to be significant.

Binary Systems

The Fe-Pr phase diagram [1999Zha] depicts only one intermetallic compound $Fe_{17}Pr_2$ (Th_2Zn_{17} -type rhombohedral). Both the reported crystalline forms of Fe_2Pr (*C*14 and *C*15) are metastable. The Fe-Pt phase diagram [2004Oka] depicts a continuous solid solution (γ) between Pt and the face-centered cubic (fcc) Fe. Three ordered structures, Fe₃Pt (AuCu₃-type cubic), FePt (AuCu-type tetragonal), and FePt₃ (AuCu₃-type cubic), form congruently from γ at ~840, ~1300, and ~1350 °C, respectively. The Pr-Pt phase diagram [2005Ren, Massalski2] shows a number of intermediate compounds: PrPt₅ (CaCu₅-type hexagonal), PrPt₃ (AuCu₃-type cubic), PrPt₂ (MgCu₂-type cubic), Pr₃Pt₄ (Pd₄Pu₃-type rhombohedral), α PrPt (FeB-type orthorhombic), β PrPt (CrB-type orthorhombic), Pr₃Pt₂ (Er₃Ni₂-type rhombohedral), and Pr₇Pt₃ (Fe₃Th₇-type hexagonal).

Ternary Isothermal Section

With starting metals of purity greater than 99.9% and under Ar atmosphere, [2005Ren] arc-melted 60 alloy com-

positions with Pr contents up to 70 at.%. The samples were annealed at 900 °C for 2 weeks and quenched in water. The phase equilibria were studied by x-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The isothermal section at 900 °C constructed by [2005Ren] is redrawn in Fig. 1 to agree with the accepted binary data. No ternary compounds were found in the system. The solubilities of Pr in (α Fe), γ , FePt, FePt₃, and (Pt) were found to be 6, 2, 4, 4.5, and 1.5 at.%, respectively. The solubility of Fe in Pr-Pt compounds is less than 1 at.%. The binary compound Pr₃Pt₄ was not found at 900 °C. It is probably destabilized by small amounts of Fe [2005Ren]. The phase relationships in the high-Pr region are not known.

References

- 1999Zha: W. Zhang, C. Li, and X. Su, The Fe-Pr (Iron-Praseodymium) System, J. Phase Equilib., 1999, 20(2), p 158-162
- 2004Oka: H. Okamoto, Fe-Pt (Iron-Platinum), J. Phase Equilib. Diffusion, 2004, 25(4), p 395
- 2005Ren: J. Ren, Z. Gu, G. Cheng, and H. Zhou, Solid State Phase Equilibria in the Fe-Pt-Pr Ternary System at 1173 K, J. Alloys Compd., 2005, 394, p 211-214

Fig. 1 Fe-Pr-Pt isothermal section at 900 °C [2005Ren]